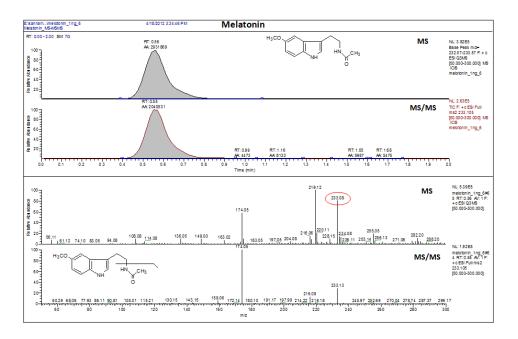
9/10/2012. Current Standard Operating Protocols (SOP), NCBS-CCAMP MS-Facility Metabolomics – Method Development and Validation

Purpose: To provide general guidelines for conducting routine tandem triple quadrupole mass spectrometer calibration.

Reagents: All solvents and reagents used are of LC-MS quality.

Protocol:


Steps for the method development for specific metabolites to know the absolute quantification (STDs and ISTDs to be obtained from the companies)

- (i) MS scan, MS/MS scan and picking the most intense ion for the SRM scan
- (ii) Spiking the STD and ISTD to the matrix and extraction of metabolite from matrix (Sera, Saliva, Water, cell extract and Urine)
- (iii) Detection of LOD and LOQ
- (iv) Construction of STD curve
- (v) Validation of the method (Inter & Intraday, recovery, accuracy and precision)

Example: Quantification of Melatonin from planarian extract.

(i). MS and MS/MS scan and picking the most intense ion for the SRM scan

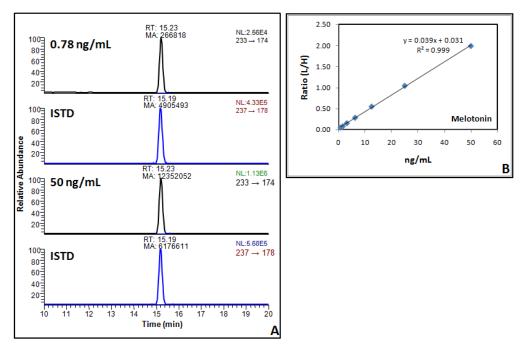

- Prepare melatonin (100 ng/mL) solution by diluting the original stock solution (1mg/mL in methanol of melatonin) in 0.5% Acetonitrile (0.1% FA).
- Equilibrate the guard column cartridge with isocratic (30% A, 70% B) gradient with the flow rate of 100 μl/min.
- Transfer the sample (50 μ l) into the HPLC vial and place it in the autosampler.
- Inject 10 µl of sample for the analysis.
- Do both full scan and product ion scan in the same method with two different scan events [MS san: 50 to 300 m/z, scan time 0.5 sec, MS/MS scan by selecting the parent ion (233 Da collision energy 15, with unit resolution in both quads)].
- The extracted molecular ion chromatogram and the corresponding spectrum for both MS and MS/MS were shown in the figure 1.
- The m/z of parent ion is 233 Da and the m/z of the most intense product ion is 174 Da.
- Select the transition from $233 \rightarrow 174$ for the SRM analysis.

Figure1: Analysis of melatonin by MS and MS/MS experiment. Ten micro liter of melatonin (100 ng/mL) was injected. Analysis was done using C-18 Guard column cartridge with the flow rate of 100 μ l/min and in isocratic mode [30% A (water with 0.1% FA), 70% B (ACN with 0.1% FA)].

(ii). Spiking the STD and ISTD to the matrix and extraction of metabolite from matrix

- Prepare the stock solution (STD and ISTD) of melatonin (~1 µg/mL) in 50% methanol (0.1% FA) by serial diluting the original stock solution (1mg/mL).
- Prepare the seven point working standards (0.78 ng/mL to 50 ng/mL) by serial diluting the 1 μ g/mL stock in 200 μ l acetone (0.1% FA) along with the ISTD of all (50ng/mL).
- Dry this in speed vacuum and reconstitute it in 50 μl of 0.5% acetonitrile (0.1% FA) and transfer this into the HPLC vial for the injection.
- The typical SRM chromatogram of melatonin from the lowest (0.78 ng/mL) and highest (50 ng/mL) and the STD corresponding STD curve was shown in the figure 2.

Figure 2: A) LC-SRM chromatogram of melatonin in the lowest and highest concentration. B) STD curve for melatonin.

(iii). Method Validation:

- Construct the STD curve along with the quality controls (LOQ, LQC, MQC and HQC) as shown in the table 1.
- Repeat this at least for three days to know the consistency of the method.
- Calculate the interday mean, coefficient of variation and accuracy as shown in the table 1.

	LOQ	LQC	MQC	HQC
Melatonin				
ng/mL	1.56	3.12	20.00	40.00
Interday mean	1.50	3.07	20.23	40.77
%CV (n=5)	7.03	7.23	4.98	2.51
Accuracy (%)	96.34	98.29	101.13	101.92